A Categorical Semantics for Linear Logical Frameworks

نویسنده

  • Matthijs Vákár
چکیده

A type theory is presented that combines (intuitionistic) linear types with type dependency, thus properly generalising both intuitionistic dependent type theory and full linear logic. A syntax and complete categorical semantics are developed, the latter in terms of (strict) indexed symmetric monoidal categories with comprehension. Various optional type formers are treated in a modular way. In particular, we will see that the historically much-debated multiplicative quantifiers and identity types arise naturally from categorical considerations. These new multiplicative connectives are further characterised by several identities relating them to the usual connectives from dependent type theory and linear logic. Finally, one important class of models, given by families with values in some symmetric monoidal category, is investigated in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kripke Resource Models of a Dependently - typed , Bunched � - calculus

The £-calculus is a dependent type theory with both linear and intuitionistic dependent function spaces. It can be seen to arise in two ways. Firstly, in logical frameworks, where it is the language of the RLF logical framework and can uniformly represent linear and other relevant logics. Secondly, it is a presentation of the proof-objects of a structural variation, with Dereliction, of a fragm...

متن کامل

Kripke resource models of a dependently - typed , bunched λ - calculus ( extended abstract )

The λΛ-calculus is a dependent type theory with both linear and intuitionistic dependent function spaces. It can be seen to arise in two ways. Firstly, in logical frameworks, where it is the language of the RLF logical framework and can uniformly represent linear and other relevant logics. Secondly, it is a presentation of the proof-objects of BI, the logic of bunched implications. BI is a logi...

متن کامل

Category theory, logic and formal linguistics: Some connections, old and new

We seize the opportunity of the publication of selected papers from the Logic, categories, semantics workshop in the Journal of Applied Logic to survey some current trends in logic, namely intuitionistic and linear type theories, that interweave categorical, geometrical and computational considerations. We thereafter present how these rich logical frameworks can model the way language conveys m...

متن کامل

Syntax and Semantics of Linear Dependent Types

A type theory is presented that combines (intuitionistic) linear types with type dependency, thus properly generalising both intuitionistic dependent type theory and full linear logic. A syntax and complete categorical semantics are developed, the latter in terms of (strict) indexed symmetric monoidal categories with comprehension. Various optional type formers are treated in a modular way. In ...

متن کامل

Linear Logical Reasoning on Programming

In our paper we follow the development of our approach of regarding programming as logical reasoning in intuitionistic linear logic. We present basic notions of linear logic and its deduction system and we define categorical semantics of linear logic as a symmetric monoidal closed category. Then we construct linear type theory over linear Church’s types involving linear calculus with equational...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015